Order For Similar Custom Papers & Assignment Help Services

Fill the order form details - writing instructions guides, and get your paper done.

Posted: February 1st, 2024

Write linear programming project – Operation Management

Write linear programming project – Operation Management

1. A linear programming problem cost minimization problem has objective function: Minimize X +Y. It has two constraints 2X + 4Y ≥ 100 and 1X + 8Y ≤ 100, X≥ 0, Y≥0.

1.1. Use QM for Windows to plot the feasible region. Paste image of Linear Programming Results window and Solution List window here.

1.2. Paste image of Graph window here.

Write my Essay Online Writing Service with Professional Essay Writers – Explain if each of the following statements below is true or false. Please make sure you provide a reason.

1.3. There are four corner points including (50, 0) and (0, 12.5).

1.4. The two corner points are (0, 0) and (50, 12.5).

1.5. The feasible region is triangular in shape, bounded by (50, 0), (33-1/3, 8-1/3), and (100, 0).

1.6. The graphical origin (0, 0) is in the feasible region.2. A manager must decide on the mix of products to produce for the coming week. Each unit of Product A requires three minutes per unit for molding, two minutes per unit for painting, and one minute for packing. Each unit of Product B requires two minutes per unit for molding, four minutes for painting, and three minutes per unit for packing. There will be 600 minutes available for molding, 600 minutes for painting, and 420 minutes for packing. Both products have contributions of $1.50 per unit.

2.1. Formulate the problem as a LP and write the linear programming model here. (Include definitions of decision variables, objective function and constraints.)

2.2. Solve the problem using QM for Windows. Paste image of Linear Programming Results window and Solution List window here.

2.3. What combination of A and B will maximize contribution, and what is the maximum possible contribution?

2.4. Write the problem in standard form. (Include definitions of decision variables, objective function and constraints.)

2.5. Write the initial simplex table and label it Simplex Table 2A.1.

Simplex Table

Basis CB

Zj

Cj – Zj

2.6. After creating Simplex Table 2A.1, find the entering variable using the Cj-Zj values and write it here.

2.7. What is the leaving variable? (Show MRR calculations.)

2.8. Write the elementary row operations for finding the new row __.

2.9. If row __ changes, write the elementary row operations for finding the new row __. If row __ does not change, explain why it does not change.

2.10. If row __ changes, write the elementary row operations for finding the new row __. If row __ does not change, explain why it does not change.

2.11. Write the new table and label it Simplex Table 2B.2.

Simplex Table

Basis CB

Zj

Cj – Zj

2.12. What is the entering variable?

2.13. What is the leaving variable? (Show MRR calculations.)

2.14. Write the elementary row operations for finding the new row __.

2.15. If row __ changes, write the elementary row operations for finding the new row __. If row __ does not change, explain why it does not change.

2.16. If row __ changes, write the elementary row operations for finding the new row __. If row __ does not change, explain why it does not change.

2.17. Write the new table and label it Simplex Table 2C.3.

Simplex Table

Basis CB

Zj

Cj – Zj

2.18. Is there an entering variable? If not, explain what this means.

3. A LP problem has three constraints: 2X + 10Y ≤ 100; 4X + 6Y ≤ 120; 6X + 3Y ≤ 90 and the non-negativity constraints. The objective is to Maximize X.

3.1. Write the problem in standard form. (Include definitions of decision variables, objective function and constraints.)

3.2. Solve the problem using QM for Windows. Paste image of Linear Programming Results window and Solution List window here.

3.3. Write the initial simplex table and label it Simplex Table 3A.1.

Simplex Table

Basis CB

Zj

Cj – Zj

3.4. After creating Simplex Table 3A.1, find the entering variable using the Cj-Zj values and type it here.

3.5. What is the leaving variable? (Show MRR calculations.)

3.6. Write the elementary row operations for finding the new row __.

3.7. If row __ changes, write the elementary row operations for finding the new row __. If row __ does not change, explain why it does not change.

3.8. If row __ changes, write the elementary row operations for finding the new row __. If row __ does not change, explain why it does not change.

3.9. Write the new table and label it Simplex Table 3B.2.

Simplex Table

Basis CB

Zj

Cj – Zj

3.10. Is there an entering variable for the next table? If so, what is the entering variable? If not, explain what this means.

3.11. What is the largest quantity of X that can be made without violating any of these constraints? Write my Essay Online Writing Service with Professional Essay Writers – Explain your answer.

4. Bryant’s Pizza, Inc. is a producer of frozen pizza products. The company makes a net income of $1.00 for each regular pizza and $1.50 for each deluxe pizza produced. The firm currently has 150 pounds of dough mix and 50 pounds of topping mix. Each regular pizza uses 1 pound of dough mix and 4 ounces (16 ounces= 1 pound) of topping mix. Each deluxe pizza uses 1 pound of dough mix and 8 ounces of topping mix. Based on the past demand, Bryant wants to make at least 50 regular pizzas and at least 25 deluxe pizzas. The problem is to determine the number of regular and deluxe pizzas the company should make to maximize net income.

4.1. Formulate this problem as an LP problem and write the linear programming model here. (Include definitions of decision variables, objective function and constraints.)

4.2. Solve using QM for Windows. Paste image of Linear Programming Results window and Solution List window here.

4.3. Write my Essay Online Writing Service with Professional Essay Writers – Explain your solution in words.

4.4. How much dough mix and topping mix are leftover?

5. A gold processor has two sources of gold ore, source A and source B. In order to keep his plant running, at least three tons of ore must be processed each day. Ore from source A costs $20 per ton to process, and ore from source B costs $10 per ton to process. Costs must not exceed $80 per day. Moreover, Federal Regulations require that the amount of ore from source B cannot exceed twice the amount of ore from source A. Ore from source A yields 2 oz. of gold per ton, and ore from source B yields 3 oz. of gold per ton.

5.1. Formulate this problem as a LP and write the linear programming model here. (Include definitions of decision variables, objective function and constraints.)

5.2. Solve the problem in QM for Windows. Paste image of Linear Programming Results window and Solution List window here.

5.3. How many tons of ore from both sources must be processed each day to maximize the amount of gold extracted? Write my Essay Online Writing Service with Professional Essay Writers – Explain your answer.

5.4 What is the maximum amount of gold extracted? Write my Essay Online Writing Service with Professional Essay Writers – Explain your answer.

Order | Check Discount

Tags: Best Research Paper Topics for Examples, Dissertation App, Dissertation Topics for Students in, I need help writing a doctoral thesis online, I need help writing a page paper assignment

Assignment Help For You!

Special Offer! Get 20-25% Off On your Order!

Why choose us

You Want Quality and That’s What We Deliver

Top Skilled Writers

To ensure professionalism, we carefully curate our team by handpicking highly skilled writers and editors, each possessing specialized knowledge in distinct subject areas and a strong background in academic writing. This selection process guarantees that our writers are well-equipped to write on a variety of topics with expertise. Whether it's help writing an essay in nursing, medical, healthcare, management, psychology, and other related subjects, we have the right expert for you. Our diverse team 24/7 ensures that we can meet the specific needs of students across the various learning instututions.

Affordable Prices

The Essay Bishops 'write my paper' online service strives to provide the best writers at the most competitive rates—student-friendly cost, ensuring affordability without compromising on quality. We understand the financial constraints students face and aim to offer exceptional value. Our pricing is both fair and reasonable to college/university students in comparison to other paper writing services in the academic market. This commitment to affordability sets us apart and makes our services accessible to a wider range of students.

100% Plagiarism-Free

Minimal Similarity Index Score on our content. Rest assured, you'll never receive a product with any traces of plagiarism, AI, GenAI, or ChatGPT, as our team is dedicated to ensuring the highest standards of originality. We rigorously scan each final draft before it's sent to you, guaranteeing originality and maintaining our commitment to delivering plagiarism-free content. Your satisfaction and trust are our top priorities.

How it works

When you decide to place an order with Dissertation App, here is what happens:

Complete the Order Form

You will complete our order form, filling in all of the fields and giving us as much detail as possible.

Assignment of Writer

We analyze your order and match it with a writer who has the unique qualifications to complete it, and he begins from scratch.

Order in Production and Delivered

You and your writer communicate directly during the process, and, once you receive the final draft, you either approve it or ask for revisions.

Giving us Feedback (and other options)

We want to know how your experience went. You can read other clients’ testimonials too. And among many options, you can choose a favorite writer.